Implementation of a primal-dual method for SDP on a shared memory parallel architecture

نویسندگان

  • Brian Borchers
  • Joseph G. Young
چکیده

Primal–dual interior point methods and the HKM method in particular have been implemented in a number of software packages for semidefinite programming. These methods have performed well in practice on small to medium sized SDP’s. However, primal–dual codes have had some trouble in solving larger problems because of the storage requirements and required computational effort. In this paper we describe a parallel implementation of the primal-dual method on a shared memory system. Computational results are presented, including the solution of some large scale problems with over 50,000 constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying the Boundary Point Method to an Sdp Relaxation of the Maximum Independent Set Problem for a Branch and Bound Algorithm

A common method, originally introduced by Lovász in 1979, for calculating an upper bound on the size of a maximum independent set for a graph is to consider a relaxation of the problem expressed as a semidefinite program (SDP). Today, the most prevalent method for solving a general SDP is with a primal-dual interior point method (IPM). These methods are highly developed, provide reliable conver...

متن کامل

Sdpa Project : Solving Large-scale Semidefinite Programs

The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial...

متن کامل

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

PASSCoDe: Parallel ASynchronous Stochastic dual Co-ordinate Descent

Stochastic Dual Coordinate Descent (DCD) is one of the most efficient ways to solve the family of `2-regularized empirical risk minimization problems, including linear SVM, logistic regression, and many others. The vanilla implementation of DCD is quite slow; however, by maintaining primal variables while updating dual variables, the time complexity of DCD can be significantly reduced. Such a s...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2007